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Abstract
Kai is an experimental interpreter that provides explicit control over the compilation process. It can

generate optimised code at run-time in order to exploit the nature of the underlying hardware. It is a
unique exploration into world of dynamic code compilation and the interaction between high and low
level semantics.
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1 Introduction
A ship in port is safe; but that is not what ships are built for. Sail out to sea
and do new things.

Grace Hopper

Programming languages enable humans to communicate with computational machines at various levels of
abstraction. Just like a spoken language, a programming language provides the basic constructs that shape
the way we express our ideas. Unlike spoken languages, programming languages have precise semantic
models that must be respected in order for a program to be executed correctly.
Humans are inherently creative, and in many ways the unbounded nature of the human mind creates many
circumstances where language is insufficiently expressive. In these cases we utilise the human capacity
beyond language to communicate our desires or feelings; but for computers this is not possible (at least,
not yet!).
Thus, in order to satisfy humans expressive capabilities, programming languages provide varying levels
of abstraction. The more capacity the language provides for abstract expression, the more convenient it
is for solving problems by human minds, because we can deal with the concerns of the problem domain,
rather than those of the implementation, and apply human intuition more naturally.
However, at some point a program needs to be executed to satisfy the users’ computational needs. The-
oretically, we can say that the distance between the physical hardware and the abstract execution model
dictate the maximum efficiency of the abstract program. A program written directly in machine code will
have its instructions executed as fast as is physically possible. However, an abstract program may need
to have its instructions executed in a one-to-many fashion, which reduces performance.
For efficiency, many abstract programming languages provide constructs with well defined translation
semantics. Modern optimising compilers can perform advanced transformations of the program to suit
the underlying hardware architecture and because compilation is an offline process, a compiler can expend
a large amount of effort to produce optimal code. Compiled programs can run quickly because the machine
is executing a concrete implementation of the abstract program.
Another approach is to use an interpreter, which processes the program in whatever abstract form it takes,
and executes the required behaviour on the processor directly. Because this translation happens at run
time, the translation mechanism is sharing processor resources with the executing program, and this can
cause interpreted programs to be less efficient than their compiled counterparts. However, in general,
interpreted languages are far more flexible than compiled languages, because they have access to far more
information about the program at run time.
This study is an investigation into both interpreted and compiled semantics, with a particular emphasis on
programming language design and performance analysis of compiled and interpreted code.
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2 Definitions
Compiler

A compiler is any kind of tool that processes input data to output data, typically without side effects.
In this sense, the same input will typically produce the same output every time. Often, compilation
process converts a verbose input format into a concise output format - some information may be
discarded in the compilation process.

Execution Model
An execution model is a specific class of interpreters that defines how and when specific instruc-
tions are executed. This might include out-of-order execution, parallel execution, register and stack
implementation, memory and device interaction, and so on.

Interpreter
An interpreter is a program that can execute a given input to produce behaviour. This program can
either be a software program or a hardware processor. In this sense, an x86 CPU with microcode
would be considered an interpreter.

Operating System
At a fundamental level, an operating system provides a set of primitives for software execution. In
many cases, the primary purpose of an operating system is to share hardware resources amongst
multiple processes efficiently and securely. In addition, many operating systems provide standard
interfaces for a variety of different kinds of hardware such as network, display and audio.

Programming Language
A programming language consists of a well-defined syntax and a semantic behaviour. It may also
include libraries of source code, supporting tools and infrastructure for execution.

Semantic Model
A semantic model is an abstract set of concepts which can be used to describe the behaviour of
a system, and in this research will be used to refer to the behaviour of a computer programming
language1. In theoretical computer science, formal semantics is the field concerned with the rigorous
mathematical study of the meaning of programming languages and models of computation.

Syntax Model
A syntax model is a set of rules which can be used to validate and process textual input into a tree
data structure, commonly referred to as a parse tree.

1For more information see http://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages.
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3 Background

Most software today is very much like an Egyptian pyramid with millions of
bricks piled on top of each other, with no structural integrity, but just done by
brute force and thousands of slaves.

Alan Kay

There are many programming environments in the world. They provide various combinations of semantics
and syntax to facilitate the expression of computer programs; this allows us to solve many different kinds
of problems. From crafting instructions to run directly on a processor to high level expressions of logic
and behaviour, there are many systems for expressing that which is computable.
A syntax and semantic model (collectively known as a programming language) define the space in which a
programmer creates a solution to a problem. A particular solution may require many compromises when
expressed in a particular programming language, some which may create problems with the particular
solution.
In the realm of software engineering, there are also additional concerns such as existing infrastructure
(i.e. standard libraries, support libraries), development tools (i.e. source code aware editors, refactoring
tools, debuggers) and scalability issues (i.e. deployment platforms, distributed execution, reliability and
redundancy). Depending on the design of the programming language, these additional concerns may be
minimised.
A complete programming environment includes some kind of execution model and typically an operating
system. These factors may influence the performance of a solution due to architectural implementation.
Several existing approaches exist, such as byte code interpretation and native code compilation (see table
1). Architectures that directly support specific parts of a semantic model are more likely efficiently execute
a program.

Execution Model Programming Language Implementation
Tree-based Interpreter Perl (≤ 5), Ruby (MRI ≤ 1.8)
Bytecode Interpreter Berkeley Pascal, Java (≤ 1.2), Python, Ruby (1.9), Smalltalk-80
Native Code Compilation Ada, C & C++ (GCC), Haskell (GHC), Java (GJC)
Bytecode + Dynamic Compilation Self, Smalltalk, Java (≥ 1.3)

Table 1: A variety of different execution models

A particular semantic model might be designed to match a particular execution model, or a particular
execution model might be created to match a given semantic model2. This is normally a performance
trade-off, but when the machine model dictates the semantic model, there can be serious issues with
regards to machine-independence3.
Modern processors provide advanced features such as multiple threads of execution, parallel execution
of instructions, multiple layers of cache and sub-processors for specific tasks to name a few. Building
a general semantic model that can be executed efficiently on multiple different machine models can be
complex, because the underlying hardware may not necessarily support the required features. Making a
programming language both abstract and efficient can be a challenging task.

2Several Java processors implement Java bytecode directly in hardware. This is an example of a semantic model dictating the
structure of a hardware platform.

3Programming languages that rely on byte order or register size may create difficulties when executing on a machine model with
different intrinsic properties.
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There are many issues surrounding the development of an effective programming language, and while
there are a large number of existing programming languages, there are still many possibilities that can be
explored.

3.1 1800–1960: The Birth of the Compiler
The Jacquard loom was invented in 1801 and used punched cards to program sewing patterns automat-
ically. Although it was incapable of performing computations, it is considered the conceptual precursor
to modern punch-card based computers, because it allowed the operator to change the behaviour of the
loom by providing a different program.
In 1837, Charles Babbage described the Analytical Engine, an essentially modern general purpose com-
putational machine. During 1842–1983, Ada Lovelace was tasked with translating documents about Bab-
bage’s Analytical Engine, and she appended a set of notes which specified in complete detail a method for
calculating Bernoulli numbers with the machine. This is generally accepted as the world’s first computer
program, even thought it was impossible to execute it at the time.
Over the next 100 years, computer science related technology and theory continued to advance. Alonzo
Church created lambda calculus as a way to express function definition, application and recursion. Alan
Turning developed the idea of the Turning Machine which can be used to explain what is and isn’t com-
putable. John von Neumann put forward the idea of the stored-program architecture, where a computer
consists of memory, processors and input/output units.
It was in the 1940s that the first general purpose electric computers were developed4. The limitations
imposed by these computers required programmers to write hand-tuned assembly language programs,
and it was soon realised that such programs were difficult to produce and highly prone to errors.
In an attempt to avoid these problems, during 1943–1946, Konrad Zuse developed Plankalkül; a system for
expressing algorithms widely regarded as the first attempt to create a programming language. However,
due to the mindset of time time favouring assembly programming, ‘[it] never attained the consideration it
deserved’ according to Heinz Rutishauser.
It was also during this time that Grace Hopper (an American computer scientist and U.S. Naval officer)
became a pioneering computer programmer, writing programs for the Harvard Mark I. During her time
as a programmer, she conceptualised the idea of machine-independent programming languages, and is
widely credited with popularising the term ‘debugging’ when she removed a dead moth from an electronic
relay.
During the 1950s, the number of available computers and programming languages grew rapidly. John
Backus developed FORTRAN[1] in 1955; a language designed for numerical and scientific computation.
John McCarthy developed LISP[2] in 1958; a symbolic language based on Alonzo Church’s lambda cal-
culus. Grace Hopper heavily influenced the design of developed COBOL in 1959; a language designed
for business, finance and administration. All three of these languages are still in use today in one form or
another.
It was also around this time, the mid 1950s, that the ALGOL 60 Report[3] was published. It described
the programming language ALGOL which represented a consolidation of many important programming
language ideas. The language specification used Backus-Naur Form for describing the context-free portion
of the language’s syntax, and it introduced several important language concepts including lexical scoping
of language declarations using nested blocks of code.

4For more details see http://en.wikipedia.org/wiki/History_of_computing_hardware
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The first compiler was developed by Grace Hopper in 1952 for the A-0 programming language (a precursor
by several steps to COBOL). Subsequent development led by John Backus at IBM led to a FORTRAN
compiler in 1957. COBOL was one of the first languages to have compilers for multiple architectures
in 1960. In 1962, the first self-hosting compiler5 was created for LISP by Tim Hard and Mike Levin at
MIT.
From this point onward, it was common to use a compiler for building executable binary code.

3.2 1960–1975: The Advancement of Abstraction
After the initial burst of blossom during the 1940s and 1950s, we begin to see programming languages
bloom into full colour during the 1960s and 1970s. Many pivotal language paradigms were invented
during this period.
One of the major changes was the shift away from unstructured programming using goto statements. In
1966 a paper was published[4], which showed that every computable function can be implemented using
a structured approach. Thus, many computer scientists started to investigate more advanced methods of
structured programming, such as object-oriented, imperative and functional programming. It was also
during this time that Edsger Dijkstra published the somewhat humorous ‘Go To Statement Considered
Harmful’.
Simula[5], developed during the 1960s, was a direct superset of ALGOL 60. It was designed for per-
forming large simulations and included language features specifically for this purpose. It was one of the
first languages to provide an object-oriented semantic model. It allowed for the definition of classes,
subclasses and virtual methods, and its execution model included garbage collection.
Pascal is a structured programming environment developed by Nikalaus Wirth between 1968–1970. It was
based on ALGOL and was designed largely as a language for teaching students. The language definition
included a complete standard library of functionality and this made it ideal as a teaching tool.
BASIC, an unstructured programming language, was developed in 1964 by John George Kemeny and
Thomas Eugene Kurtz to provide computer access to non-science students. It was designed to be an easy
interactive programming language, but still provide advanced features where possible. One of its main
features was its interactive shell and the fact that it shields the user from the execution environment.
Smalltalk[6] was developed during the 1970s by Alan Kay and was a departure from typical programming
environments of the time. It provided an encapsulated and self-hosted execution model built on top of a
single messaging primitive for communication between different objects – in this sense it was completely
dynamically typed and object-oriented.
C was developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix
operating system (which was also developed around this time). It was designed to be a simple and portable
language with constructs that could be compiled easily to efficient assembly code. It requires minimal
runtime support and provides a very simple standard library.
Prolog[7] was developed in the early 1970s and has its foundation in formal logic. It processes factual
information, and can answer questions about the information it has been provided. It supports a variety
of complex programming tasks such as natural language analysis, expert systems, theorem proving, and
other sophisticated control systems that rely on relationships between data.

5A self hosted compiler is a compiler written in the language it compiles.
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ML was developed in the late 1970s and was one of the first widely used functional programming lan-
guages. It has a number of important features such as advanced type inference, algebraic data types,
parametric polymorphism and exception handling.
These major languages all represented different approaches to solving problems.

3.3 1975–1980: The Personal Computer
In 1975, the MITS Altair 8800 was released, a do-it-yourself microcomputer kit, and single-handedly
sparked the beginning of the personal computer, which made programming widely available to people in
a way that had previously been impossible.
Over the next few years, many different kinds of low cost personal computers were produced, including
the Apple II, Commodore PET and TRS-80.
Many of these machines were equipped with variations of the BASIC interpreter. Previously all serious
programming had been done on mainframe computers, however, this allowed many people to experience
programming for the first time, and this ensured that BASIC became a popular and well known program-
ming language.

3.4 1980–1990: Large Scale Software
During the 1980s, the progress of computer hardware and software was accelerating at a tremendous
speed. Software applications were beginning to exist on a larger scale with the advent of ethernet, and as
such, programming languages were being improved to solve problems spanning a wide variety of different
concerns. In this sense, many of the languages developed during this period of time tried to augment and
recombine existing ideas to improve their application to real world problems.
Modula-2, based on Pascal6, developed by Niklaus Wirth between 1977–1980, was a pioneering language
in this respect; it was designed to improve the development of large software projects by dividing source
code into modules. Modules were compiled separately and explicitly listed their exported symbols; they
could then be linked together to form a complete program.
C++, developed by Bjarne Stroustrup in 1983, was a combination of existing procedural C and object-
orientated semantics borrowed from Simula. The object-oriented programming paradigm was widely
respected as the best way to design large scale software, and thus C++ was an attempt add an object-
oriented semantic model to a fast low level programming language in order to get the benefits of both a
high level semantic model and a fast execution model.
Ada, developed by the United States Department of Defence from 1977–1983 was influenced by ALGOL
68 and Modula-2 and included similar mechanisms for modularity, but also included semantics to improve
the reliability and verification of computer programs.
Eiffel[8], developed in 1986 by Bertrand Meyer, took many ideas from Ada and Simula and recom-
bined them into a purely object-oriented programming language based around a design by contract ap-
proach.
Erlang[9], also developed in 1986 by Ericsson, built on many of the features of Scala, but included features
for fault-tolerant distributed applications. It supports hot swapping code modules, so that running systems
can be updated without downtime.

6Actually, a prototype existed called Modula, but it was never officially released.
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3.5 1990–2000: The Information Era
During the 1990s, the Internet began to take off. Web browsers began to become a standard part of the
desktop computer, and HTTP7 and HTML8 was widely adopted as a standard way of presenting informa-
tion to the end user.
The web provided a unified front end for software to interact with users. Previously, software was used
almost exclusively on the platform for which it was developed via some kind of platform specific user
interface; but now it was possible to create software that interacted with users on different platforms via
HTTP and HTML.
Due to the growth of platform and programming language independence, a wide variety of scripting lan-
guages were developed in an attempt to improve the speed at which applications were developed. Many
of these languages were designed with different sets of priorities, but ultimately ended up with many
similar features. This represented a convergence of features that were typically expected in a modern
programming environment for high level programming tasks.
Python[10] was conceived of during the late 1980s and its first implementation was completed in 1991
by Guido van Rossum. Python was designed to have a clear and powerful syntax as well as a large
standard library of functionality. It is a multi-paradigm language supporting a wide variety of different
programming styles, primarily object-oriented and imperative semantics, but also including functional
semantics where useful. It is a highly pragmatic language and despite its high level nature, has many
similarities to minimalist languages such as LISP.
In 1993, Yukihiro Matsumoto developed Ruby[11], a language heavily influenced by Perl, Smalltalk,
Eiffel and LISP. Like Python, it is a multi-paradigm language and provides a large standard library of
functionality. In contrast, however, Ruby has a much more functional approach to programming, and
coupled with its very flexible syntax, has provided a fertile ground for the development of domain specific
languages.
Prior to 1995, HTML was a static medium for communicating with the end user, normally generated
by some program on a server, and delivered to the end user via HTTP. In 1995 this changed with the
advent of JavaScript, a language designed to run in the web browser and augment the delivery of HTML
content to the end user. It was one of the first very popular (by virtue of its circumstances) prototype-based
programming languages (the first being Self), and one of the first languages to have a distributed execution
model, in the sense that code is sent to the web browser to be executed.
One of the most popular languages create at this time was PHP, a very simple object-oriented programming
language. It did not bring anything new to the table in terms of programming paradigms, but it did provide
a very low barrier to entry into web programming, and this made it very successful.
Also in 1995, the programming language Java was developed by James Gosling and representing a cul-
mination of business programming practices and ideas. It was designed for very large scale software
engineering challenges, and provided a rigorous, principled semantic model to simplify the development
of interconnected software components. The execution model was specifically designed to allow cross-
platform development, deployment and integration with minimal effort.

7Hyper Text Transport Protocol
8Hyper Text Markup Language
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3.6 2000–2010: Refinement and Interoperability
During this period of time we see a large number of existing languages being refined and distilled into well
engineered platforms for top to bottom software development. Investment in existing software platforms
mandates that incremental enhancements be made to existing languages rather than a complete departure
from existing infrastructure. In this sense, many developers preferred extensions to language functionality
through the development of libraries rather than fundamental changes to languages; and one may say
that the general foundations of computer programming languages settled during this time because of this
change in thinking.
Objective-C, a language which appeared in the late 1980s, suddenly became popular due to the advent of
Mac OS X which used it extensively in its fundamental systems frameworks. It provides a message based
object model runtime expressed entirely with C, which provides an advantage over other object-oriented
languages which often have bigger requirements. The language was revised in 2006 which provided
improvements to syntax and advanced features such as garbage collection.
Also during this time, Microsoft released the .NET framework along with C# and Visual Basic .NET in
2001. These programming languages, despite having different semantics and syntax, built upon a single
base runtime called the .NET Common Language Runtime, a virtual machine that provides generational
garbage collection and just-in-time compilation and an extensive class library.
It is also during this time that we see a large number of applications and software libraries being released,
often designed for integration with different programming languages. Software applications such as a
database could be written in one language, and have bindings exported for integration with other lan-
guages. Leveraging existing technology reduces the complexity of developing new software and allows
higher level problems to be solved more easily. This also brings issues of interoperability between lan-
guages, with some languages having sufficiently different semantic models as to make interoperability
difficult.
One fundamental outcome of all these high level developments was the establishment of C as a common
denominator across the majority of platforms. Because of its simple syntax and low complexity semantic
model, it is a prime target for standard APIs which can then be shared across multiple different languages
and adapted into more complex semantic models (i.e. object oriented or functional).
Even thought programming languages during this time generally improved in the sense that they started
to become complete platforms for software engineering, there were still many new interesting languages
developed.
Scala[12], released in 2003 by Martin Odersky, is an attempt to integrate both object-oriented and func-
tional programming semantics. The name Scala stands for scalable language, and as such the language
has been designed from the ground up to assist with the development of large scale programs using func-
tional techniques. In order to leverage existing technologies, Scala runs directly on top of the Java Virtual
Machine, and this allows it to utilise existing libraries and be integrated into existing applications seam-
lessly.
Factor[13], a language that has been developed in several iterations since 2003, is a dynamically typed
stack based language with powerful meta-programming features. Like Scala, it combines various object-
oriented and functional semantics to create a cross-platform, modern programming environment.
Clojure[14], developed in 2007 by Rich Hickey, is a modern dialect of LISP with a unique approach to
parallel programming. Like Scala, it runs within the Java Virtual Machine which provides a large amount
of existing functionality. Clojure concurrency is based on the idea of immutable data structures that can
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be updated efficiently. It has well defined concept of time, and provides a semantic model to deal with
changes to data structures over time.
Go[15], developed by Robert Griesemer, Rob Pike and Ken Thompson from 2007 and released in 2009,
is a simple, fast, concurrent and safe language designed for network and systems programming. During
design, a primary goal has been to keep the number of features to a minimum and provide strict type
safety. Another important goal is to ensure fast compilation by reducing the dependencies between files
and allowing the compiler to cache intermediate build steps more effectively. The language exposes
interesting primitives for concurrent communication and distributed execution.

3.7 The Future: Scalability and Reliability
History has shown that success is often dictated by simplicity, despite the problems this may create in
the fundamental properties of a language. Many programming languages have incrementally developed
syntax and semantic models, and in this sense they are more familiar to existing programmers. Conversely,
unfamiliar or complex languages are typically ignored. A programming language requires a significant
critical mass before it becomes popular and is widely utilised.
Languages with complex semantic models naturally limit the amount of interoperability they provide
with other environments. However, much has been gained from obscure languages too - new ideas and
new concepts have often found their roots in programming languages which have ultimately proved to be
unpopular.
The future of programming languages will be centred around standardisation and scalability. As part
of this, domain specific languages will play an important role and help solve specific problems more
effectively (where in the past a general purpose language would have been used). Performance in many
cases will be less important as computer hardware continues to improve and hardware resources continue
to expand.
Java is a prime example of standardisation and scalability. While Java has a well defined execution model
that suits many software engineering problems, there are problems which are far more efficiently solved
with specific sets of semantics. Because of this, Java as a platform has been the centre for many specific
languages (e.g. Scala[12], Groovy[16], Jess[17], Clojure[14], Fantom[18]) which help to solve specific
types of programming tasks.
As the scale of software engineering tasks continues to expand, serious scalability issues become appar-
ent. Many performance issues are not those of individual programs, but that of large bodies of programs
running together. Programming language semantics can facilitate the communication and sharing of data
between programs, and this will be an important aspect of modern programming languages.

3.7.1 Distribution and Execution

How do we make programs faster by distributing the problem over multiple execution platforms? How do
we deal with architectural differences? As programs are combined of many different pieces, how do we
decide which pieces are distributed and in which way? Even with large scale software which is typically
deployed on thousands of machines, can we test pieces in isolation and verify the behaviour of software
as it is scaled up? Are there new language paradigms that can support programmers to create software
with these types of concerns?
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3.7.2 Reliability and Verification

How do we improve the reliability of software and verify its correctness? As programs get bigger,
it becomes increasingly difficult for any one person to understand their characteristics. Are there se-
mantic models and execution environments which improve the chance that software works as required?
Are there efficient systems for ensuring the correct execution of computer programs and enabling fault-
tolerance?

3.7.3 Software Engineering

How do we describe the solutions to problems in ways which allow us to avoid repetition? As software
projects increase in size and scope, how do programming languages support the development of modular
programs and are such solutions tied to a specific semantic model or can they be generalised?

3.7.4 Integration and Modularity

How can we integrate disparate technologies and platforms without increasing the burden on the devel-
oper and the end user? Platform agnostic technologies such as XML and Unicode have provided a good
foundation for the exchange of information; but these are also very verbose formats that may affect per-
formance.
What other options exist for modularity of source code and how can these be used as a net gain (i.e. a
reduction of programming work required to solve a particular problem)? Existing solutions are often tied
to specific platforms and languages. Is it even possible to have a net gain in all areas when writing different
parts of a program in different languages?

3.7.5 Libraries vs Languages

Finally, which of the above issues should be solved at the language semantic level, in comparison to
supporting libraries which provide functionality? This is perhaps, the most difficult question. Many
programming languages have limited support for meta-programming and the ability to introduce new
semantics into the programming language itself. Thus, this problem is not one of pure computer science,
but also of software engineering – can we really seek to change the extensive foundations of existing
computer programs?
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4 Philosophy

There are two ways of constructing a software design. One way is to make it
so simple that there are obviously no deficiencies. And the other way is to
make it so complicated that there are no obvious deficiencies.

Sir Charles Antony Richard Hoare

In order to create a successful programming language, one must balance multiple, often competing, con-
cerns and demands. The high level design of a programming language is not only a technical challenge,
but a philosophical and creative theatre where many different perspectives must be considered.

4.1 The Art of Syntax
Most general purpose programming languages represent source code using structured text9. For this text
to mean anything, a parser must process this text into a structured form. This is typically referred to as an
intermediate representation10.
Structured text can be processed in a variety of different ways. An interpreter might evaluate the value
of a node directly, while a compiler might use this representation to make optimisations and then produce
machine code.

LISP

ALGOL C/C++ Java

Scheme Clojure

ML

Haskell

OCaml

Figure 1: Three major roots of programming language syntax.

It is very difficult to categorise the roots of syntax, but in general there appear to be three main categories
(see figure 1). Modern programming languages are harder to classify as they draw on many specific
elements beyond any single categorisation. However, it is still useful to understand how these different
approaches affect the design of a programming language.
Due to the expressive power of LISP, its fundamental syntax has not changed very much over time. How-
ever, both ML and ALGOL style syntax have changed significantly. This could be attributed to the chang-
ing semantics of modern languages, and the implicit connection between syntax and semantics in these
languages.

9However, some languages have experimented with visual programming interfaces, such as Scratch (http://info.scratch.mit.edu/)
10For more details see http://en.wikipedia.org/wiki/Intermediate_representation
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LISP style syntax can be hard to read because it has a sparse and repetitive visual context11. Humans have
the capacity to recognise and process complex expressions, but LISP style syntax does not utilise this
capability. Languages which are syntactically denser require less code to express the same ideas.
When programming languages have strict syntax, many types of errors can be detected easily. This may
make a syntactically strict language less prone to errors, and better at recovery in the event of a programmer
error. Different forms of syntax for specific types of expressions - while tedious - may reduce the chance
that the program is invalid.
There are many different approaches to syntax in the design of a programming language. There are many
qualities that one may seek to maximise:

• A syntax which builds on familiar syntactic structures helps new programmers understand a lan-
guage quickly by utilising existing knowledge and expectations.

• A syntax which is consistent across multiple different syntactic structures allows new knowledge
to be applied intuitively throughout the programming language.

• A syntax which has an intuitive structure allows programmers to use perceptual abilities and prior
knowledge to understand source code without being familiar with the specific syntactic constructs.

• A simple structure which allows programs to be parsed by external tools easily and correctly. This
can simplify processes such as refactoring, statistical analysis, and program visualisation.

• A recursive syntax which allows programmers to express nested expressions in a way that is more
inline with typical thought patterns.

4.2 The Semantic Gap
Programming language semantics are vast and varied. There are a large number of issues to decide upon,
and no simple answer.
One fascinating trend in the history of programming languages is the changes in the way designers have
approached the semantic problem. Initially we see a very purest approach to semantics where a pro-
gramming language is designed around one or two central pillars, often referred to as paradigms. As an
example, we can look at LISP (pure lambda calculus), Prolog (pure logic based), Smalltalk (pure object
oriented).
Many of these paradigms are very useful, but in order to make a more complex program we want better
integration between different paradigms; this is very much a pragmatic approach to problem solving. Most
modern languages are considered multi-paradigm and include a variety of orthogonal language concepts
– this allows the programmer to combine syntax and semantics in the most appropriate way for a given
problem.
Python, a multi-paradigm language, builds upon many existing ideas and supports a wide variety of pro-
gramming styles including object-oriented programming, structured programming, functional program-
ming, aspect-oriented programming (including meta-programming) and design by contract. The design
philosophy[19] embodies many concepts that have been explored in prior programming languages.

11If LISP was black and white, C++ would be all the colours of the rainbow, including infrared and radio waves
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4.3 Constant or Variable?
Many programming languages have the concept of immutable values and constant expressions. Im-
mutability is a restriction that provides an invariant about a value or data structure. In general, things
which are immutable will not change. By specifically marking something as immutable, a wide variety
of different optimisations (e.g. constant propagation and inlining) become possible.
In many static languages, functions and types cannot be defined more than once – they are immutable.
This is part of the semantic model for practical purposes because it would make the language ambiguous
if different declarations could have the same identification. Static languages, due to immutability, provide
many opportunities for code analysis and error checking.
Most basic data types are also immutable in the sense that expressions on basic data types produce new
values rather than mutate existing values. However, in many programming languages these semantics are
not consistent12.
Beyond this basic definition, programming languages with shared state may require strong guarantees
about when particular state can be changed; this is especially true in parallel execution environments. If
two objects contain the same state, and this state is shared/aliased, a change to one object may inadvertently
change the other.

4.4 Past, Present and Future
There are many different approaches to time in a computer program. Depending on the semantics of
instruction execution, some programs can be easily distributed across multiple processing units.
In a typical procedural language, one instruction executes after the other in a well defined sequence. This
kind of program is easy to follow and has a well defined behaviour. However, this approach does not lend
itself well to parallel processing. It can be impossible to analyse the dependencies between instructions
and make decisions about how to distribute execution in order to increase efficiency.
Expert systems which have rules and dependent behaviours (such as Prolog) deal with cause and effect
and have a different approach to time. As the state of an expert system changes, behaviours may be
invoked, which may in turn update state. This type of system decouples the sequence of instructions
that are executed as in a procedural system, and exchanges this for well defined dependencies between
behaviours.
Some languages support lazy evaluation which means that expressions may not be evaluated if the result
is not required, even if it is part of an expression. This can be very convenient as it reduces the amount of
explicit ordering required, but it can also introduces subtle semantic details which increase the chance of
programmer error.

4.5 Evolutionary Ascent
Programming languages can be defined in a very abstract sense - a semantic model can be expressed using
logic and mathematical notation, while syntax can be represented using state machines and other such
mechanisms. However, such definition may not be very practical. Through the process of implementation,
a new compiler or interpreter may find its place in history.

12Python’s list mutation operator x+= y changes the original list x, and is not strictly equivalent to x = x+ y
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All compilers and by implication interpreters have ties to the birth of the first computer. Every modern
compiler was given life by one that came before it, and assumptions and structures of prior technology
influence the structure of that which comes next. Things as simple as data types and operations, to the
structuring of memory and order of execution, may be dictated by prior technology.
One such example of this is the term bootstrapping which in this context refers to a compiler compiling
a new compiler for a different execution model. In this case we are creating an entirely new compiler
for a platform on which no compiler may have existed previously; this phenomenal achievement allows
existing technology and advances to be applied to new hardware, despite the fact that previously there
may have been few, if any, tools developed for the platform.

4.6 The Cost of Change
When developing a programming language, there are many issues to consider - one being change to
fundamental semantic and syntactic models. It is implicitly important that programming languages are
able to support a wide ecosystem of software and related tools. These tools often depend on assumptions
built into the programming language, and if these change, significant problems are often caused.
We can see a very pertinent example of this with the evolution of Python from version 2.x to 3.0. Python
3.0 introduces changes to syntax and semantics that break existing code. Due to this, a large amount of
effort has been expended updating standard libraries and improving support for already functioning 2.x
code, and many people have voiced concerns about whether the benefits of the changes outweighs the cost
in updating existing source code.
In many ways this is one of the strengths of C, in that it provides a baseline that has been well established
in many different execution environments.
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5 Kai
Imagination is more important than knowledge. For knowledge is limited,
whereas imagination embraces the entire world, stimulating progress, giving
birth to evolution.

Albert Einstein

With great dignity and respect for the history of programming languages, I now take the honour to discuss
my exploration into this realm.
Kai started several years ago as a project to improve my understanding about computer programming
languages, and also to make a real improvement to the way I write programs. Through this process I
have expanded my understanding of the different kinds of language paradigms and learnt a great deal, and
despite the investment of time on my part required for this journey, I have felt at every step it has been of
great personal value.
Many different programming languages have contributed to my appreciation of computer science, and I
feel that if there is some ideal programming language, it has yet to be discovered. I have a great deal of
respect for the hardware we use as computer programmers, and I aim to avoid inefficiencies in both the
way we express our ideas as programmers, as well as how they are executed.

Figure 2: The Kai logo incorporates a circle and the Japanese character Kai会 which means ‘meeting’.

5.1 Meaning
The Japanese character会 generally translates into ‘meeting’. There are many ways in which this is sig-
nificant. In this particular instance its usage can be considered in terms of弓道, which roughly translates
into ‘Way of the Bow’ (Archery). The highest goals in 弓道 are truth 真, goodness 善 and beauty 美.
Truth is the pursuit of the correct technique and to grasp the truth of things; Goodness represents inner
calm and balance; beauty is to maintain a clear structure and composition. There are many formal steps
in弓道; Kai会 is the moment before the arrow is released, when the energy of the bow and the body of
the archer are in balance.
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5.2 Overview
Kai is a simple language based on a LISP style syntax with several extensions. It is written in C++
and utilises several external libraries: the Boehm-Demers-Weiser conservative garbage collector[20] and
LLVM[23] for dynamic compilation. It employs a prototype based object model (similar to JavaScript)
and has several primary data types including Tables for associative storage (similar to Lua) and Cells for
parse trees (similar to LISP). It has been designed for simplicity and extensibility; the core interpreter
consists of several fundamental objects and for the most part is homoiconic13.
The basic structure is outlined in figure 3.

Output

Input

Interpreter Context

File Terminal

Expressions

Values

Result

Evaluate Success

Parse Success

Syntax Error
Parse Failure

Stack Backtrace
Execution Failure

Print Result

Figure 3: A high level overview of Kai.

5.3 Online Interpreter
During the discussion of Kai, several examples are given. These can be executed online using the Kai
interpreter available at http://kai.oriontransfer.co.nz/.

13Homoiconicity is a property of some programming languages, in which the primary representation of programs is also a data
structure in a primitive type of the language itself.

21

http://kai.oriontransfer.co.nz/


6 Syntax
Kai uses a syntax similar to that of LISP, with the facility to enhance the syntax easily with new expres-
sions. Rather than implementing a complex grammar, Kai consists of a set of high level expressions. Input
is tested against these expressions in turn, and if nothing matches it is considered an error. An expression
is able to implement a grammar in any way that is convenient.
The Kai command line allows source code to be entered one line at a time. This is done by keeping
track of individual expressions. For a given input i, we check against expressions e1, e2, ..., en, and if an
expression parses completely then we consider the input valid. If the input i does not parse correctly, we
consider two options: either the input i+ j may be successful, or input i can never be successful. We use
this property to validate when we require more input from the user, or if the current input already contains
a fatal syntax error.

6.1 Formal Grammar
<alpha> = a-z A-Z ;

<numeric> = 0-9 ;

(* A program is an expression *)
<expression> = <integer> | <string> | <symbol> | <operator> |

<cell> | <value> | <call> | <block> ;

<integer> = ('-' | '') <numeric> * ;

<string> = '"' <character> * '"' ;
<character> = ('\"' | [^ '"']) * ;

<symbol> = <alpha> (<alpha> <numeric>) * ('?' | '!' | '=' | '') ;

(* This is an augmentation of <symbol> *)
<operator> = '==' | '<=>' | '<=' | '>=' | '<<' | '>>' | '<' | '>' |

'+' | '-' | '*' | '/' | '%' | '=' ;

(* This is the primary form of nested expressions *)
<cell> = '(' <expression> * ')' ;

(* These expressions are all for convenience. *)
<value> = '`' <expression> ;

<call> = '[' <expression> * ']' ;

<block> = '{' <expression> * '}' ;

22



6.2 Strings
A string represents a sequence of characters. A character is one or more bytes as defined by the encod-
ing. By default, Kai expects strings to be encoded using UTF-8, and does not have provisions for other
encodings.
A string is represented literally by data enclosed between two quotation marks. Internal quotation marks
can be escaped using a backslash, along with several other characters such as tab, newline and null char-
acters.�Bytes can be inserted using hexadecimal escape sequences.

Listing 1: Strings
ka i > ” H e l l o \ nWorld ! ”
” H e l l o
World ! ”
ka i > ” H e l l o \ t \ tWor ld ! ”
” H e l l o World ! ”
ka i > ” Apples \ x26 Oranges ”
” Apples & Oranges ”

6.3 Numbers
Basic numbers without a decimal point are considered integers. These can be both positive and nega-
tive.

Listing 2: Integers
ka i > −55
−55
ka i > 897
897

Numbers with a decimal point are current unsupported.

6.4 Symbols
Symbols are sequences of characters which represent an identifier. They are different from strings in
the sense that they require no quotation marks, and internally a symbol also has an associated hash
value.

Listing 3: Symbols
ka i > ‘ ThisIsASymbol
ThisIsASymbol
ka i > [ ‘ ThisIsASymbol hash ]
1291
ka i > [ ‘ hash hash ]
420
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6.5 Cells
A Cell is a basic structure of recursion. A Cell consists of a head and a tail, and is, in traditional literature
a single link in a singly linked list. The head of a cell is the value it contains, and the tail of the cell is the
next cell in the list, or null.
A cell can represent a multitude of different data structures including lists, trees and graphs.

Listing 4: Cells
ka i > ‘ (10 a p p l e s and 20 o r a n g e s )
(10 a p p l e s and 20 o r a n g e s )
ka i > [ ‘ ( 1 0 a p p l e s and 20 o r a n g e s ) head ]
10
ka i > [ ‘ ( 1 0 a p p l e s and 20 o r a n g e s ) t a i l ]
( a p p l e s and 20 o r a n g e s )

6.6 Values
A value expression is a short-hand notation for giving the value of an operand rather than the result of its
evaluation. It is done using the back-tick character before an expression.

Listing 5: Values
ka i > ‘ ‘ bob
( v a l u e bob )
ka i > ‘ bob
bob
ka i > bob
n i l

6.7 Calls
A call expression is a short-hand notation for method dispatch on a given object. Because the semantics of
this operation are non-trivial, having a syntactic expression for this type of function is preferable.

Listing 6: Calls
ka i > [ ‘ o r i o n hash ]
551
ka i > ‘ [ ‘ o r i o n hash ]
( c a l l ( v a l u e o r i o n ) ( v a l u e ( hash ) ) )

6.8 Blocks
Blocks are collections of code. They are are syntactic sugar to enhance reading code.

Listing 7: Blocks
ka i > { [ ( t h i s ) s e t ‘ x 10] [ x r e t u r n ] }
10
ka i > ‘ { [ ( t h i s ) s e t ‘ x 10] [ x r e t u r n ] }
( b l o c k ( c a l l ( t h i s ) ( v a l u e ( s e t ( v a l u e x ) 10) ) ) ( c a l l x ( v a l u e ( r e t u r n ) ) ) )
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7 Semantics
The question of whether computers can think is like the question of whether
submarines can swim.

Edsger W. Dijkstra

Kai has been designed explicitly to have as few intrinsic semantics as possible. This makes it very easy
to experiment with various different program flow controls and structures. It has also been important as it
has provided insight into what basic structures are required to make a programming language sufficiently
useful.

7.1 Evaluation
Kai has a single fundamental semantic: evaluation14. It is on this foundation that all other semantics are
structured.

evaluate(value, frame) → result

A result is produced by evaluating a given expression value in an execution context frame. The importance
of evaluation cannot be underestimated; without it there is simply the existence of the value, but nothing
can be achieved.
The behaviour of evaluation is defined by the implementation of the various data structures exposed by
Kai. Many built-in functions are provided by the current implementation and these provide additional
high level semantics.

7.2 Value Semantics
The most basic form of evaluation is simply to return the value itself.

evaluate(value, frame) → value

7.2.1 Example

In this case, evaluating a string or an integer returns the exact same value. This is the default behaviour
for Kai datatypes.

ka i > 19850402
19850402
ka i > ” Tru th , Goodness and Beauty ”
” Tru th , Goodness and Beauty ”

14In a sense, this corresponds to the release of the arrow,離れ
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7.3 Lookup Semantics
The second most basic form of evaluation is to correlate two things together. Given a symbol, we can find
out what it referrers to, starting from the current frame.

evaluate(symbol, frame) →

 frame[symbol] if frame defines symbol,
evaluate(symbol, parent(frame)) if frame has a parent,
nil otherwise.

7.3.1 Example

The symbol x is not defined initially, so the result of evaluate(x) is nil. Once we define a value for x,
evaluating it gives us a result.

ka i > x
n i l
ka i > [ ( t h i s ) s e t ‘ x 10]
10
ka i > x
10

7.4 Application Semantics
Possibly one of the most important low level semantics is application. This is similar to traditional function
call and macro expansion semantics in other languages. The implementation in Kai is very similar to the
fexpr[21] in LISP.

evaluate(cell, frame) → evaluate(evaluate(head(cell)), next(frame, cell))

The evaluation of a cell looks at the head of the given cell (typically a symbol), and evaluates this. The
resulting value is then evaluated in a new stack frame, which is constructed by next using the given cell
which provides the operands for the evaluation. Kai does not evaluate operands implicitly (like many tra-
ditional languages). Instead, the function is passed the unevaluated arguments and the local environment
which can be used to evaluate the arguments.

7.4.1 Example

Given a cell containing a set of operands, evaluation of this cell will cause the first operand to be evaluated.
The result of this will then be used to evaluate a new stack frame containing the given operands.

ka i > l i s t
( b u i l t i n −f u n c t i o n C e l l : : l i s t )
ka i > ( l i s t a b c )
( a b c )
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7.5 Built-in Functions
Kai provides a wide range of additional semantics through built-in functions and data types. These func-
tions are written in C++ and are hooked directly into the interpreter.

ka i > l i s t
( b u i l t i n −f u n c t i o n C e l l : : l i s t )
ka i > ( l i s t a b c )
( a b c )

7.6 Scope
Kai dynamically allocates stack frames, which provide scoped name lookup. A stack frame has a arbitrary
value which represents its scope; in many cases this is a table, but not always. The function this returns
the current scope.

7.6.1 Example

ka i > [ ( t h i s ) s e t ‘ x 10]
n i l
ka i > ( t h i s )
( t a b l e {0 x101d63db0 } ‘ x 10)
ka i > x
10

When defining functions, such as when using lambda, we capture the scope at the point of declaration.
This is retained and used as the scope for variable lookup when calling the function. In a sense, a lambda
is a closure over the current dynamic scope. We can use this to create functions that retain state, typically
referred to as generators.

7.7 Prototypes
Kai exposes a prototype-based object model. It provides specific syntactic sugar to support this model
(the call expression). As part of this object model, function lookup becomes powerful, because the name
lookup uses the current scope as well as the object for evaluation.

7.7.1 Example

prototype is a free function that returns the prototype for its argument. When provided with the value 10,
it returns the Integer prototype. However, we can also use the method call notation [10 prototype] which
uses lookup to find the method prototype and execute it with 10 as the first argument.

ka i > p r o t o t y p e
( b u i l t i n −f u n c t i o n Value : : p r o t o t y p e )
ka i > ( p r o t o t y p e 10)
( t a b l e {0 x100bedc60 }
‘% ( b u i l t i n −f u n c t i o n I n t e g e r : : modulus )
‘* ( b u i l t i n −f u n c t i o n I n t e g e r : : p r o d u c t )
‘+ ( b u i l t i n −f u n c t i o n I n t e g e r : : sum ) )
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ka i > [10 p r o t o t y p e ]
( t a b l e {0 x100bedc60 }
‘% ( b u i l t i n −f u n c t i o n I n t e g e r : : modulus )
‘* ( b u i l t i n −f u n c t i o n I n t e g e r : : p r o d u c t )
‘+ ( b u i l t i n −f u n c t i o n I n t e g e r : : sum ) )

7.8 Tables
Tables provide a key-value storage semantic that maps directly to the lookup semantic. Tables also provide
the ability to set values, check if a key is is set, and many other higher level operations.

7.8.1 Example

ka i > [ Tab le new ‘ name ” A l i c e ” ‘ age 30]
( t a b l e {0 x100b98570 }
‘ name ” A l i c e ”
‘ age 30)
ka i > [ _ lookup name ]
” A l i c e ”

7.9 Wrap and Unwrap
The default semantic for a given input is evaluation. When calling a function, arguments are evaluated.
However, many functions, such as if only evaluate their arguments in certain conditions. We can control
this behaviour using wrap and unwrap semantics[22] which change the way function arguments are
evaluated.

7.9.1 Example

list is a macro that returns a cons-cell list of its arguments. We can use wrap and unwrap to change its
behaviour:

Listing 8: Wrap and Unwrap
ka i > [ ( t h i s ) s e t ‘ a 10]
10
ka i > ( l i s t a b c )
( a b c )
ka i > ( ( unwrap l i s t ) a b c )
( ‘ a ‘ b ‘ c )
ka i > ( ( wrap l i s t ) a b c )
(10 n i l n i l )

This is an interesting concept because it unifies the semantics of ‘macro expansion’ with function dispatch.
In the case of macro expansion, none of the arguments are evaluated (i.e. unwrapped), but we can take a
macro and create a function where its arguments are evaluated (i.e. wrap).
Another benefit of structuring code around explicit evaluation functions (traditionally called fexprs)is that
it allows both macros and functions to be represented as first class values, unlike many languages where
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the two ideas are very different; because of this unification, the concept of a function is solidified without
spurious limitations.
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8 Data Types
The current implementation of Kai has a limited set of data types, including Integer, String, Cell, Symbol,
Table and Lambda. These data types are allocated using memory managed by garbage collection[20].
This reduces the complexity of the implementation and reduces the chance for error due to memory man-
agement bugs.

8.1 Integer
Integer values store a 32-bit signed integral number and provide basic mathematical operations.

Listing 9: Integers
ka i > I n t e g e r
( t a b l e {0 x101a10c90 }
‘% ( b u i l t i n −f u n c t i o n I n t e g e r : : modulus )
‘* ( b u i l t i n −f u n c t i o n I n t e g e r : : p r o d u c t )
‘+ ( b u i l t i n −f u n c t i o n I n t e g e r : : sum ) )
ka i > [5 + 10 20 30]
65
ka i > [10 * 10 2]
200
ka i > [12345678 % 9]
0
ka i >

A more advanced implementation may add support for arbitrary-precision mathematics.

8.2 String
String values store a sequence of characters and provide basic concatenation and character extraction
functions. A more advanced implementation might include support for regular expressions.

Listing 10: Strings
ka i > S t r i n g
( t a b l e {0 x101a10870 }
‘ a t ( b u i l t i n −f u n c t i o n S t r i n g : : a t )
‘+ ( b u i l t i n −f u n c t i o n S t r i n g : : j o i n )
‘ s i z e ( b u i l t i n −f u n c t i o n S t r i n g : : s i z e ) )
ka i > [ ” Foo ” + ” Bar ” ]
” FooBar ”
ka i > [ _ a t 3 ]
”B”

8.3 Cell
Cell values store a head and tail value, equivalent to a LISP[2] cons cell. A list is represented by a chain
of cells with values stored in head, and the remainder of list in tail (similar to a singly linked list).
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Listing 11: Cells
ka i > C e l l
( t a b l e {0 x101a10990 }
‘ each ( b u i l t i n −f u n c t i o n C e l l : : each )
‘ head ( b u i l t i n −f u n c t i o n C e l l : : head )
‘new ( b u i l t i n −f u n c t i o n C e l l : : _new )
‘ t a i l ( b u i l t i n −f u n c t i o n C e l l : : t a i l ) )
n i l
ka i > [ ‘ ( 1 0 20 30) head ]
10
ka i > [ ‘ ( 1 0 20 30) t a i l ]
(20 30)
ka i > [ ‘ ( 1 0 20 30) each ‘ t r a c e ]
( t r a c e (10 20 30) ) −> ( 1 0 )
( t r a c e (20 30) ) −> ( 2 0 )
( t r a c e ( 3 0 ) ) −> ( 3 0 )
n i l

All hierarchical syntax is represented using a set of nested cells.

8.4 Symbol
A Symbol value is similar to a string, however it is primarily used as a key. It is very important in the
overall structure of Kai in the sense that most atoms are symbols. It is the only value that can currently be
used for indexing into tables. Symbols are different from strings, because not only do they store the data
that represents their name, they also cache their hash code for fast access into hash table.

Listing 12: Symbols
ka i > Symbol
( t a b l e {0 x101a10a20 }
‘ hash ( b u i l t i n −f u n c t i o n Symbol : : hash ) )
ka i > [ ‘ Bob hash ]
275
ka i > [ ‘ Bob t o S t r i n g ]
”Bob”

8.5 Table
A Table value represents a key value data structure. It is the primary method of relational storage in
Kai. Therefore, they must be fast and efficient. One of the primary concerns about Kai is startup time;
if the interpreter must do many allocations at initialisation time, it will become slow. One option would
be to statically build the hash table data structure and load this from disk, but exposes its own set of
problems.
Tables may have a dynamically defined prototype. This is the core behaviour inheritance structure of Kai.
The implementation of this is very simple: For key lookup k in table t, we check if k is defined in t. If so,
we return the value t[k] → v, otherwise we check to see if the table has a prototype p, and pass the key
lookup p[k] → v in this case.

Listing 13: Tables
ka i > Tab le
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( t a b l e {0 x101a10f90 }
‘ g e t ( b u i l t i n −f u n c t i o n Tab le : : lookup )
‘ each ( b u i l t i n −f u n c t i o n Tab le : : each )
‘ p r o t o t y p e = ( b u i l t i n −f u n c t i o n Tab le : : s e t P r o t o t y p e )
‘new ( b u i l t i n −f u n c t i o n Tab le : : t a b l e )
‘ s e t ( b u i l t i n −f u n c t i o n Tab le : : u p d a t e ) )
ka i > [ ( t h i s ) s e t ‘ Cat [ Tab le new ‘ c o l o r ” b l a c k ” ] ]
( t a b l e {0 x101a1bb10 }
‘ c o l o r ” b l a c k ” )
ka i > [ ( t h i s ) s e t ‘ c [ Tab le new ‘ name ” T i g e r ” ] ]
( t a b l e {0 x101a1b540 }
‘ name ” T i g e r ” )
ka i > [ c p r o t o t y p e = Cat ]
( t a b l e {0 x101a1bb10 }
‘ c o l o r ” b l a c k ” )
ka i > [ c name ]
” T i g e r ”
ka i > [ c c o l o r ]
” b l a c k ”

8.6 Lambda
Lambdas are the primary unit of functionality in Kai. They have a well-defined set of arguments which
are evaluated before being passed to the function. Functions can either return a value explicitly, or the last
evaluated value is returned.

Listing 14: Lambdas
ka i > [ ( t h i s ) s e t ‘ x ( lambda ‘ ( a b ) ‘ { ( i f [ a == b ] ( r e t u r n ‘ e q u a l ) ( r e t u r n ‘

n o t _ e q u a l ) ) } ) ]
( lambda {0 x101a1b6f0 } ‘ ( a b ) ‘ ( b l o c k ( i f ( c a l l a ( v a l u e (== b ) ) ) ( r e t u r n ( v a l u e

e q u a l ) ) ( r e t u r n ( v a l u e n o t _ e q u a l ) ) ) ) )
ka i > ( x 10 10)
e q u a l
ka i > ( x 10 20)
n o t _ e q u a l

32



9 Compiler
Compilation is a method of improving performance by making assumptions which allow the code to
execute more efficiently on the computer processor (see figure 4). Compiled code can also interact directly
with native libraries by using native data types and function calls.
In general, we cannot compile interpreted code unless we can make assumptions about its behaviour.
Because Kai is a dynamic language, it is impossible to compile expressions directly.
Other programming languages also perform semantic checking during compilation process, including
validation of program flow and data types. This is not required in Kai, because any errors in compilation
will become run time errors during interpretation. This provides a rich feedback to the end user when
there is a semantic error in the compiler.

Human Readable Machine Executable

Platform DependentPlatform Independent

Interpreter
High Level Compiler

Interpreter Cache
Low Level Compiler

Source Code Intermediate 
Representation Machine Code

Figure 4: Code can be represented and executed in many different ways.

Kai integrates with LLVM[23], which provides cross-platform compilation, including whole program
optimisation and just-in-time compilation. Because the compiler is a loadable module, it is conceivable
that different compilers and compilation models could be supported in the same runtime.
Another benefit of the approach Kai takes to compilation, is that interpreted functions can be used to
generate compiled code. This allows for a high level of meta-programming and code generation that is
not possible in a traditional static language such as C.

9.1 Compiled Types
Kai provides support for all basic C data types, including integers, floating point numbers, structs and
functions. The interface exposed for types allows for types to be explicitly defined in terms of size.

Listing 15: Lambdas
ka i > ( i n t 32)
( compi led−t y p e i 3 2 )
ka i > ( i n t 44)
( compi led−t y p e i 4 4 )
ka i > ( p o i n t e r ( s t r u c t ( i n t 32) ( i n t 64) ( f l o a t 64) ( v e c t o r ( i n t 32) 4 ) ) )
( compi led−t y p e { i32 , i64 , double , <4 x i32 > }*)

Kai currently does not have support for annotated composite types, and thus this would be a useful addition
for the future.
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9.2 Compiled Functions
The current implementation of Kai allows for the compilation of whole functions. It takes this approach
because it aims to be an explicit dynamic compiler rather than providing transparent JIT features.

9.3 Trampoline Functions
Some compiled functions may depend on interpreted code, and vice versa. Because of this, we need
support for bouncing between different kinds of execution models. Kai supports this by dynamically
generating trampoline functions (see figure 5) which are 0-arity functions with embedded pointers to
interpreter data structures.

llvm::Value * buildTrampoline(EvaluateFunctionT trampolineFunction, Frame * trampolineFrame) 
{

return llvm::Function::Create( 

);
}

Value * trampoline() {
Frame * frame = trampolineFrame;
EvaluateFunctionT function = trampolineFunction;
return function(frame);

}

Figure 5: A compiled closure over interpreter state.

It is also important to jump from interpreter to compiled code, and because interpreter values are dynam-
ically typed, they require unboxing (see figure 6). Support for this operation is currently under develop-
ment, but the idea is that wrapper functions between the dynamic Value type and explicit compiled types
can be either done implicitly or explicitly, depending on the nature of the compiled function.

Interpreter Context

Kai::String

Kai::Integer

Compiled Code

int

std::string

Kai::Machine::extractInt32

Kai::Machine::extractString

Figure 6: The compiled code can extract data types from dynamic values.

34



10 Performance Evaluation
There are several interesting questions one can consider when approaching an interpreter with compilation
features.

• How long does it take to execute the interpreted function?
• How long does it take to compile the function?
• How long does it take to execute the compiled function?
• How can we improve overall performance by compiling functions?

For this evaluation, the greatest common divisor function will be programmed and executed (see appendix
A for the source code and disassembly). The naive implementation of this function is recursive, so we have
some opportunities for optimisation, and it is simple enough to be analysed by a human mind easily.

10.1 Method
Several different functions have been developed and executed across a wide variety of environments.
There are two main performance considerations, the time it takes to define the function and the amortised
run time. This is captured using the following benchmark:

initial definition + (k × execution)
k

Where initial definition is the time it takes to define the code for execution, and k × execution is the time
it takes to execute the function k times. This represents the cost of using a function in a typical dynamic
compiler environment, which includes both the time required to compile the function and the amortised
cost to use it.
We also look at the absolute time required for execution, which is produced by ignoring the initial defini-
tion time and warming up the execution environment by running the function several times before taking
a benchmark:

initial definition → (20× execution) → (k × execution)
k

We measure the absolute time using the right most term. We choose a large k (in this case multiples of
1024) to reduce any O(1) overheads. This metric exposes the fundamental performance of a particular
implementation and is useful for comparison and analysis purposes.
Benchmark tests for different sized k are interleaved to improve the consistency of results.

10.1.1 High Resolution Timing

Function execution is typically very quick, especially for compiled code variants. A high resolution timer
was designed specifically to improve accuracy.
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10.2 Test Cases
10.2.1 Interpreted Code

High level expressions are directly executed by the Kai interpreter. This requires only a small amount
of time for the initial definition, but the overall performance will be dictated by the performance of the
interpreter, which will likely be an order of magnitude less efficient than direct execution on the proces-
sor.

10.2.2 Compiled Code

High level expressions are converted into machine executable assembly code. This requires a costly
initial definition involving the conversion from high level expressions into LLVM IR and then compilation
to machine-level assembly code. The execution of this code should be far faster than the interpreted
code.

10.2.3 Optimised Code

Compiled code, which has been optimised using the LLVM optimiser before being converted to machine-
level assembly code.

10.2.4 Pre-compiled Code

A C implementation is compiled inside the Kai interpreter with a direct link to the interpreter. The per-
formance of pre-compiled code should be on the same order of magnitude as compiled code, but there is
no initial cost because it is amortised with the compilation and loading of the main interpreter.

10.3 Results
The GCD function is used for testing with a fixed input of 892345 and 23426. This has a recursive depth
of 8. All operations were repeated a minimum of 100 times and executed on a 2.5Ghz computer. The
testing procedure was entirely automated to ensure repeatable results. The results are listed in table 2, and
graphed together in figure 7.

36



k-Runs Interpreted Compiled Optimised Pre-compiled
Initial Definition 17.051µs 279.348µs 1248.327µs 0.000µs

1 244.651µs 2088.253µs 3005.646µs 1.150µs
2 213.653µs 1026.877µs 1527.386µs 0.817µs
3 180.981µs 686.143µs 1012.777µs 0.697µs
4 179.223µs 528.894µs 755.810µs 0.634µs
5 174.288µs 413.879µs 608.047µs 0.609µs
6 174.123µs 341.703µs 506.045µs 0.573µs
7 221.055µs 301.094µs 432.877µs 0.559µs
8 207.255µs 261.725µs 376.855µs 0.550µs
9 202.029µs 229.522µs 331.787µs 0.537µs

10 194.498µs 208.185µs 299.448µs 0.529µs
11 190.467µs 189.560µs 275.419µs 0.512µs
12 187.850µs 172.182µs 250.550µs 0.519µs
13 185.203µs 157.997µs 234.571µs 0.509µs
14 180.057µs 149.350µs 216.925µs 0.502µs
15 178.343µs 137.864µs 201.395µs 0.497µs
16 177.910µs 131.305µs 189.135µs 0.498µs
17 194.185µs 121.861µs 176.970µs 0.490µs
18 189.729µs 114.140µs 169.037µs 0.487µs
19 186.505µs 109.744µs 161.701µs 0.489µs
20 187.261µs 103.254µs 153.909µs 0.492µs
21 181.946µs 100.135µs 145.812µs 0.479µs
22 181.328µs 94.229µs 137.243µs 0.481µs
23 178.568µs 89.973µs 131.488µs 0.479µs
24 176.533µs 86.725µs 127.196µs 0.477µs
25 174.611µs 83.939µs 123.802µs 0.479µs
26 174.316µs 79.686µs 120.236µs 0.480µs
27 182.914µs 77.289µs 112.198µs 0.480µs
28 181.353µs 74.846µs 109.339µs 0.475µs
29 180.685µs 72.417µs 104.573µs 0.472µs
30 178.099µs 69.922µs 100.674µs 0.501µs
31 177.081µs 67.647µs 97.779µs 0.476µs
32 176.590µs 65.899µs 96.241µs 0.468µs

512 166.745µs 4.898µs 6.580µs 0.668µs
1024 165.683µs 3.025µs 3.915µs 0.974µs

Absolute Time 170.274µs 0.784µs 0.728µs 0.756µs

Table 2: A graph of absolute and amortised GCD performance.
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Figure 7: A graph of amortised GCD performance.
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10.4 Discussion
10.4.1 Interpreted vs Compiled

The interpreted function has a high per-run cost, but it also has a very consistent amortised cost because
the initial definition time is minimal. The compiled function has a vastly more expensive initial cost, and
despite the fact that it is over 100 times faster, it takes 10 iterations for the amortised cost to dip below
the cost of the interpreted function.
This clearly shows that that compilation of a function is only beneficial if it going to be used quite a few
times after it has been compiled. This implies that some global statistical measurements may be required
to improve performance, and that it is likely that not every decision to compile a function will improve
performance.
One potential way to solve this problem is to distribute compilation to a different processor core. If we can
move the compilation process out of the main program logic, the amortised cost could be vastly reduced.
Another option would be to use some kind of compilation cache which is saved between executions of
the program. However, behaviours like this lead to potentially unpredictable program performance which
may not be desirable.

10.4.2 Compiled vs Optimised

The optimised function was very expensive to generate, yet overall its performance was worse than its
non-optimised counterpart. The absolute performance of the optimised function is about 7% faster than
the non-optimised version, but it would take a significant amount of time for the increased initial cost to
pay off.

10.4.3 Optimised vs Pre-compiled

The pre-compiled function is about 4% slower than the optimised code generated by Kai/LLVM, but
its amortised performance is very good because of its practically minimal initial cost. This shows that
Kai/LLVM can generate better machine-level assembly than GCC in this instance.
The pre-compiled function does not represent dynamically defined program behaviour, like the other three
test cases - its behaviour cannot be changed or redefined at run-time. In this sense, it is only useful as a
performance comparison, and does not represent a functionally equivalent structure in Kai to any of the
other defined functions.

10.4.4 Code Generation

Looking at the X86 code that is generated (see appendix A), we can get a good idea of the kind of code
that is being generated by Kai and LLVM. The compiled code is 15 instructions, while the optimised code
is 10 instructions. The pre-compiled code is 20 instructions, despite being optimised for small code size
(GCC -Os).
The optimised version clearly has the most efficient implementation using a loop rather than recursion.
The GCC pre-compiled code performs several redundant stack operations and is twice as long as the
optimised code generated by Kai/LLVM, and is generally much harder to understand.
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The reduced size of the optimised code may mean that the processor can fit the entire function in cache,
which will increase the speed of the computation significantly.

10.4.5 Cache and Branch Prediction

We can see some unusual trends in the pre-compiled function performance, which might be attributed to
cache behaviour. Initially, the cost is quite high (r = 1...4); then the cost decreases (r = 14...32). After
that, when running higher benchmarks, performance cost increases again slightly. Because the GCD
function is essentially a single branch at each step, the branch prediction unit may take some time to
warm up, but it is not clear what is causing the slight decrease in performance for large r.

10.4.6 Garbage Collection

Garbage collection was noticeable in the results, and accounted for approximately 20% change in perfor-
mance in the worst case for the interpreted function. As we increased the number of function executions,
we see this reduced to around 3%. For a large program, garbage collection costs are likely to be mini-
mal.
As an improvement, the garbage collection algorithm could be designed to run on a separate thread, which
would reduce the performance impact it has on program performance.

10.4.7 Limitations

Because there was only a single function in this evaluation, the results are limited to a very specific set of
operations.
The reason for this is simply due to the effort required to create a general purpose programming language
that supports both compiled and interpreted semantics with the same behaviour. Recursive functions with
no stack variables reduce the complexity of the implementation required.
Because the function is very simple, optimisations did not yield any overall performance benefits, and the
overall amortised cost was higher by approximately 50% in the worst cases.
Despite this limitation, the results still provide useful insight into the behaviour of larger and more com-
plex functions. The main difference would be that such functions would present more opportunities for
optimisations, and this may increase the speed at which the amortised gains of optimisation outweigh its
initial cost.

10.4.8 Further Work

It would be useful to do further evaluation involving more complex functions. Because Kai only sup-
ports a limited set of data types and functions at this time, more work would be required to expand the
implementation of Kai.
It would be useful to do further analysis at the processor level to analyse the performance of specific
kinds of optimisations. High level performance by wall-clock timing does not provide clarity on how the
processor is being utilised internally.
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11 Conclusion
An interpreter has been designed and developed. It exposes a very simple semantic model and builds a
coherent programming language on top. A variety of data types have been implemented, including the
support for dynamic code compilation and optimisation as part of the interpreter. Many kinds of syntactic
and semantic models have been explored during this project, and the end result is a pragmatic balance of
form and function.
LLVM was integrated successfully and was used to generate efficient compiled code. The Boehm-Demers-
Weiser conservative garbage collector provides safe and moderately efficient memory management.
The amortised execution cost of interpreted code vs compiled code shows that the interpreter is efficient for
functions which execute infrequently. The nature of program execution means that it may be impossible
to predict in advance whether a function should be compiled, however the absolute performance of code
generated by Kai/LLVM is on par with other mainstream compilers.
While the current interpreter is sufficiently powerful for the goals of this research, further work is required
create a general purpose programming language.
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A Kai Source Code
A.1 Interpreted GCD
Here is the interpreted GCD function implemented using a lambda:

Listing 16: Interpreted GCD Function
( lambda ‘ ( a b ) ‘{

( i f [ b == 0]
( r e t u r n a )
( r e t u r n ( gcd b [ a % b ] ) )

)
} )

A.2 Compiled GCD
Here is compiled GCD function implemented using compiler:

Listing 17: Compiled GCD Function
( c o m p i l e r ‘ gcd ( f u n c t i o n ( i n t 32) ( i n t 32) ( i n t 32) ) ‘ ( a b ) ‘{

( i f [ b == 0]
( r e t u r n a )
( r e t u r n ( gcd b [ a % b ] ) )

)
} )

Compiled to LLVM IR using LLVM 2.7:
Listing 18: Compiled GCD Function : LLVM Assembler

d e f i n e i 3 2 @gcd ( i 3 2 %a , i 3 2 %b ) {
e n t r y :

%0 = icmp eq i 3 2 %b , 0 ; < i1 > [# u s e s =1]
b r i 1 %0, l a b e l %t r u e , l a b e l %f a l s e

t r u e : ; p r e d s = %e n t r y
r e t i 3 2 %a

f a l s e : ; p r e d s = %e n t r y
%1 = urem i 3 2 %a , %b ; < i32 > [# u s e s =1]
%2 = c a l l i 3 2 @gcd ( i 3 2 %b , i 3 2 %1) ; < i32 > [# u s e s =1]
r e t i 3 2 %2

}

The X86 assembly code for the procedure is as follows:
Listing 19: Compiled GCD Function : X86 Assembler

0 x0000000100d20010 : sub $0x8 ,% r s p
0 x0000000100d20014 : t e s t %e s i ,% e s i
0 x0000000100d20016 : j n e 0 x100d20023
0 x0000000100d2001c : mov %edi ,% eax
0 x0000000100d2001e : add $0x8 ,% r s p
0 x0000000100d20022 : r e t q
0 x0000000100d20023 : xor %edx ,% edx
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0 x0000000100d20025 : mov %edi ,% eax
0 x0000000100d20027 : d i v %e s i
0 x0000000100d20029 : mov $0x100d20010 ,% r a x
0 x0000000100d20033 : mov %e s i ,% e d i
0 x0000000100d20035 : mov %edx ,% e s i
0 x0000000100d20037 : c a l l q *%r a x
0 x0000000100d20039 : add $0x8 ,% r s p
0 x0000000100d2003d : r e t q

A.3 Optimised GCD
The above compiled code can be further optimised by using tail call optimisation to remove recursion:

Listing 20: Optimised GCD Function : LLVM Assembler
d e f i n e i 3 2 @gcd ( i 3 2 %a , i 3 2 %b ) nounwind r e a d n o n e {
e n t r y :

%0 = icmp eq i 3 2 %b , 0 ; < i1 > [# u s e s =1]
b r i 1 %0, l a b e l %t r u e , l a b e l %t a i l r e c u r s e

t a i l r e c u r s e : ; p r e d s = %e n t r y , %t a i l r e c u r s e
%b . t r 2 = p h i i 3 2 [ %1, %t a i l r e c u r s e ] , [ %b , %e n t r y ] ; < i32 > [# u s e s =3]
%a . t r 1 = p h i i 3 2 [ %b . t r 2 , %t a i l r e c u r s e ] , [ %a , %e n t r y ] ; < i32 > [# u s e s =1]
%1 = urem i 3 2 %a . t r 1 , %b . t r 2 ; < i32 > [# u s e s =2]
%2 = icmp eq i 3 2 %1, 0 ; < i1 > [# u s e s =1]
b r i 1 %2, l a b e l %t r u e , l a b e l %t a i l r e c u r s e

t r u e : ; p r e d s = %t a i l r e c u r s e , %e n t r y
%a . t r . l c s s a = p h i i 3 2 [ %a , %e n t r y ] , [ %b . t r 2 , %t a i l r e c u r s e ] ; < i32 > [# u s e s

=1]
r e t i 3 2 %a . t r . l c s s a

}

The X86 assembly code for the procedure is as follows:
Listing 21: Optimised GCD Function : X86 Assembler

0 x0000000100d20010 : t e s t %e s i ,% e s i
0 x0000000100d20012 : j e 0 x100d2002a
0 x0000000100d20018 : mov %e s i ,% edx
0 x0000000100d2001a : mov %edi ,% eax
0 x0000000100d2001c : mov %edx ,% e d i
0 x0000000100d2001e : xor %edx ,% edx
0 x0000000100d20020 : d i v %e d i
0 x0000000100d20022 : t e s t %edx ,% edx
0 x0000000100d20024 : j n e 0 x100d2001a
0 x0000000100d2002a : mov %edi ,% eax
0 x0000000100d2002c : r e t q

A.4 Pre-compiled GCD
A version of the GCD function was written in C and compiled directly inside Kai. Because of this, there
is no compiler overhead.
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Listing 22: Pre-compiled GCD Function : C++ Code
i n t gcd ( i n t a , i n t b ) {

i f ( b == 0 ) {
re turn a ;

} e l s e {
re turn gcd ( b , a % b ) ;

}
}

Value * precompiledGCD ( Frame * frame ) {
I n t e g e r * a = NULL, * b = NULL;

frame−> e x t r a c t ( ) ( a ) ( b ) ;

i n t r e s u l t = gcd ( a−>v a l u e ( ) , b−>v a l u e ( ) ) ;

re turn new I n t e g e r ( r e s u l t ) ;
}

The X86 assembly code for the procedure is as follows, compiled using ‘g++ -Os’:
Listing 23: Pre-compiled GCD Function : X86 Assembler

0 x0000000100013020 : push %rbp
0 x0000000100013021 : mov %rsp ,% rbp
0 x0000000100013024 : sub $0x10 ,% r s p
0 x0000000100013028 : mov %edi ,−0x4(% rbp )
0 x000000010001302b : mov %e s i ,−0x8(% rbp )
0 x000000010001302e : cmpl $0x0 ,−0x8(% rbp )
0 x0000000100013032 : j n e 0 x10001303c <_ZN12_GLOBAL__N_13gcdEii+28>
0 x0000000100013034 : mov −0x4(% rbp ) ,% eax
0 x0000000100013037 : mov %eax ,−0 xc(% rbp )
0 x000000010001303a : jmp 0 x100013054 <_ZN12_GLOBAL__N_13gcdEii+52>
0 x000000010001303c : mov −0x4(% rbp ) ,%edx
0 x000000010001303f : mov %edx ,% eax
0 x0000000100013041 : s a r $0x1f ,% edx
0 x0000000100013044 : i d i v l −0x8(% rbp )
0 x0000000100013047 : mov %edx ,% e s i
0 x0000000100013049 : mov −0x8(% rbp ) ,% e d i
0 x000000010001304c : c a l l q 0 x100013020 <_ZN12_GLOBAL__N_13gcdEii>
0 x0000000100013051 : mov %eax ,−0 xc(% rbp )
0 x0000000100013054 : mov −0xc(% rbp ) ,% eax
0 x0000000100013057 : l e a v e q
0 x0000000100013058 : r e t q
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B A Brief Programming Language History

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

Smalltalk 80

Ruby

C# 2.0

SML

Caml

OCaml

Perl

Perl 5

Java 2 (v1.5 beta)

Fortran I

PL/I

Algol 60

Fortran 77

Scheme

Common Lisp

Scheme R5RS

Pascal

Fortran 90

Prolog

Python

Python 2.0

Smalltalk

C (K&R)

Tcl

C++

COBOL

C#

Lisp

Java JavaScript

C++ (ISO) Haskell 98

Ada 83

Eiffel

ML

Figure 8: A simplified programming language history[24].
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